Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Trends in Food Science & Technology ; 136:169-180, 2023.
Article in English | ScienceDirect | ID: covidwho-2309189

ABSTRACT

Background Growing evidence points to a link between specific fatty acids ingested through the diet and human health. Chain length, saturation degree, and position of double bonds in fatty acids determine their effect in humans. Omega-3 and omega-6 fatty acids have been recognized for their contribution to the prevention and/or treatment of diabetes, cancer, visual impairment, cardiovascular diseases, as well as neurological and musculoskeletal disorders. Scope and approach Humans cannot synthesize these fatty acids in sufficient amounts and need to absorb them through the diet. Oleaginous microalgae constitute a promising, sustainable source of such fatty acids, as they can accumulate up to 85% of lipids on a cell dry weight basis. Key findings and conclusions The present review summarizes the potential of oleaginous microalgae as a convenient, economical, and sustainable source of polyunsaturated fatty acids, and explores their beneficial role in human health. The growing prevalence of cardiovascular diseases and changing dietary preferences are driving the increasing demand for microbial omega-3 fatty acids. Following the COVID-19 pandemic, the importance of a healthy immune system has further strengthened the market for omega-3 fatty acids.

2.
Neumologia y Cirugia de Torax(Mexico) ; 81(1):41-51, 2022.
Article in Spanish | EMBASE | ID: covidwho-2278995

ABSTRACT

The regulation of inflammation is a complex pathophysiological process that depends on the production of oxygenated lipid derivatives essential polyunsaturated fatty acids, like omega-3 and omega-6, among which are the lipoxins resolvins and protectins, called specialized pro-resolving lipid mediators (SPM). Their activity is associated with the control of respiratory infection processes to modulate the production of proinflammatory cytokines, avoiding damage due to inflammation-associated necrosis, reducing microbial loads, and promoting tissue remodeling. Therefore, we review some of the biochemical, physiological and immunological aspects of SPM in the regulation of inflammation in respiratory infections.Copyright © 2022, Instituto Nacional de Enfermedades Respiratorias. All rights reserved.

3.
Nutricion Clinica Y Dietetica Hospitalaria ; 42(4):136-144, 2022.
Article in English | Web of Science | ID: covidwho-2203757

ABSTRACT

Introduction: Confinement has adverse psycho-social as well as dietary repercussions. During the pandemic there was a higher consumption of processed and canned foods, in-creasing the consumption of omega 6 (co-6) and probably de-creasing the consumption of omega 3 (co-3).Objective: To determine the relationship between knowl-edge and dietary habits about omega 3 and 6 in university students from Ecuador and Peru during COVID-19.Methods: Descriptive, cross-sectional study, carried out in 134 Ecuadorian and 215 Peruvian students. Data were obtained from a virtual questionnaire with questions on knowledge and dietary habits about ca-3 and ca-6. Spearman's Rho, Mann Whitney U and Kruskall Wallis statistical tests were performed.Results: A correlation coefficient of knowledge and eating habits on ca-3 and ca-6, Rho=0.146 (p=0.092) and Rho=0.081 (p=0.235) was obtained for the samples from Ecuador and Peru, respectively. In Ecuadorian students, there were differences in the levels of knowledge about ca-3 and ca -6, both in males and females (p=0.007). In both countries there are different levels of knowledge in the different spe-cialties of the study (p=0.004).Conclusion: There is no correlation between knowledge and eating habits about ca-3 and ca-6 in university students of Health Sciences in both countries. Students from Ecuador present insufficient knowledge and inadequate dietary habits about ca-3 and ca-6, more than Peru.

4.
Nutrients ; 13(7)2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1314706

ABSTRACT

Oxidative stress and inflammation have been recognized as important contributors to the risk of chronic non-communicable diseases. Polyunsaturated fatty acids (PUFAs) may regulate the antioxidant signaling pathway and modulate inflammatory processes. They also influence hepatic lipid metabolism and physiological responses of other organs, including the heart. Longitudinal prospective cohort studies demonstrate that there is an association between moderate intake of the omega-6 PUFA linoleic acid and lower risk of cardiovascular diseases (CVDs), most likely as a result of lower blood cholesterol concentration. Current evidence suggests that increasing intake of arachidonic acid (up to 1500 mg/day) has no adverse effect on platelet aggregation and blood clotting, immune function and markers of inflammation, but may benefit muscle and cognitive performance. Many studies show that higher intakes of omega-3 PUFAs, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are associated with a lower incidence of chronic diseases characterized by elevated inflammation, including CVDs. This is because of the multiple molecular and cellular actions of EPA and DHA. Intervention trials using EPA + DHA indicate benefit on CVD mortality and a significant inverse linear dose-response relationship has been found between EPA + DHA intake and CVD outcomes. In addition to their antioxidant and anti-inflammatory roles, omega-3 fatty acids are considered to regulate platelet homeostasis and lower risk of thrombosis, which together indicate their potential use in COVID-19 therapy.


Subject(s)
Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-6/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Cardiovascular Diseases/prevention & control , Humans , Inflammation/prevention & control , Oxidative Stress/drug effects
5.
Lifestyle Genom ; 14(2): 37-42, 2021.
Article in English | MEDLINE | ID: covidwho-1059823

ABSTRACT

COVID-19, which is caused by SARS-CoV-2, is characterized by various symptoms, ranging from mild fatigue to life-threatening pneumonia, "cytokine storm," and multiorgan failure. The manifestation of COVID-19 may lead to a cytokine storm, i.e., it facilitates viral replication that triggers a strong release of cytokines, which then modulates the immune system and results in hyperinflammation. Today's diet is high in omega-6 fatty acids and deficient in omega-3 fatty acids; this, along with a high fructose intake, leads to obesity, which is a chronic state of low-grade inflammation. Omega-6 fatty acids are proinflammatory and prothrombotic whereas omega-3 fatty acids are less proinflammatory and thrombotic. Furthermore, omega-3 fatty acids make specialized lipid mediators, namely resolvins, protectins, and maresins, that are potent anti-inflammatory agents. Throughout evolution there was a balance between omega-6 and omega-3 fatty acids with a ratio of 1-2/1 omega-6/omega-3, but today this ratio is 16-20/1 omega-6/omega-3, leading to a proinflammatory state. In addition, genetic variants in FADS1, FADS2, ELOV-2, and ELOV-5 lead to a more efficient biosynthesis of long-chain polyunsaturated fatty acids (PUFAs), e.g., of linoleic acid (LA) to arachidonic acid (ARA), and (alpha-linolenic acid) (ALA) to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), leading to higher ARA levels. Because the US diet is already high in omega-6 fatty acids, the increased biosynthesis of ARA in people with the derived FADS haplotype (haplotype D) leads to an increased production of leukotrienes, thromboxanes, C-reactive protein (CRP), and eventually elevated levels of cytokines, like interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF), which may increase susceptibility to COVID-19. About 80% of African Americans, 50% of Hispanics, and 45% of European Americans have the FADS haplotype D and are thus efficient metabolizers, which could account for the higher vulnerability of these populations to COVID-19. Therefore, another reason that African Americans and Hispanics are more susceptible to COVID-19 is that they have a higher frequency of haplotype D, which is no longer beneficial in today's environment and diet. Genetic variation must be considered in all studies of disease development and therapy because it is important to the practice of precision nutrition by physicians and other health professionals. The objective of this commentary is to emphasize the importance of genetic variation within populations and its interaction with diet in the development of disease. Differences in the frequency of genes and their interactions with nutrients in various population groups must be considered among the factors contributing to health disparities in the development of COVID-19. A balanced omega-6/omega-3 ratio is essential to health. Physicians should measure their patients' fatty acids and recommend decreasing the intake of foods rich in omega-6 fatty acids and increasing the intake of omega-3 fatty acids along with fruits and vegetables.


Subject(s)
COVID-19/epidemiology , Diet , Genetic Variation , Inflammation/complications , COVID-19/genetics , COVID-19/physiopathology , COVID-19/virology , Cytokine Release Syndrome , Delta-5 Fatty Acid Desaturase , Dietary Fats/administration & dosage , Evolution, Molecular , Humans , Life Style , Obesity/complications , Risk Factors , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL